
ARRS J3-9289
The role of cyclic adenosine monophosphate in normal beta cell physiology and during development of type 2 diabetes mellitus
Vloga cikličnega adenozin monofosfata v normalni fiziologiji celic beta in med razvojem sladkorne bolezni tipa 2
Abstract
In beta cells, glucose stimulates insulin secretion by way of
intracellular metabolism, which yields ATP and closes ATP-dependent potassium
channels. This, in turn, leads to depolarization, opening of voltage-dependent
calcium channels, and calcium influx. The resulting increase in intracellular
calcium is the secondary message triggering exocytosis. The therapeutically
important sulfonylureas bind directly to ATP-dependent potassium channels and
depolarize the cell and trigger insulin secretion in a largely
glucose-independent manner. In contrast, the incretin hormones or therapeutic
agents that mimic their action act on beta cells by binding to extracellular
G-protein coupled receptors that stimulate adenylyl cyclase and thus increase
intracellular cAMP. This second messenger acts via two distinct intracellular
pathways, either PKA or Epac2A, to influence different steps of the triggering
cascade, but seems to be unable to trigger exocytosis in the absence of
glucose- or sulfonylurea-initiated triggering signal. Lately, evidence has been
presented that sulfonylureas directly modulate Epac2A activity, and that
incretins are also able to produce the triggering increase in calcium
concentration, suggesting that there are many intersections of signaling pathways
activated by glucose, sulfonylureas, and incretins. In addition to its
intracellular effects on stimulus-secretion coupling, cAMP might influence
intercellular spreading of glucose- or sulfonylurea-induced depolarization and
calcium waves. This intercellular functional coupling normally serves to align
beta cell glucose responsiveness at the level of all beta cells coupled in an
islet of Langerhans, but is also target of diabetogenic insults during
development of insulin resistance and type 2 diabetes. However, how exactly
cAMP influences intra- and intercellular signal conduction and what is its role
for whole body glucose tolerance in normal conditions and during development of
type 2 diabetes, remains poorly understood and this might at least partly account
for the present lack of long-term therapeutic success of sulfonylureas and our
inability to better stratify patients to different treatment groups depending
on the duration of disease or knowledge of specific beta cell defects. More
specifically, there is gap in our knowledge on the differential roles of PKA
and Epac2A in the above processes and a better understanding of how their mode
of action could lead to development of novel therapeutic agents. By studying
glucose-, sulfonylurea- and incretin-induced stimulus-secretion coupling from
most proximal (membrane depolarization) to most distal steps (exocytosis),
intercellular coupling, and whole animal glucose tolerance in control and Epac2
knock-out mice, fed either a control diet or a western diet to induce insulin
resistance and beta cell adaptation and failure, within the framework of this
project we aim to achieve the following four main objectives:
- To
clarify the role of Epac2A and PKA in mediating the effects of cAMP on
various steps of stimulus-secretion coupling.
- To
clarify the role of Epac2A and PKA in mediating the effects of cAMP on
intercellular functional coupling.
- To
explore the role of Epac2A and PKA in mediating the effects of not only
glucose but also various sulfonylureas, especially their influence upon
changes in membrane potential and calcium oscillations, the sensitivity of
the exocytotic machinery and intercellular functional coupling between
beta cells.
- To
help mechanistically explain the role of Epac2A and PKA in beta-cell
adaptation and dysfunction during development of western diet-induced
mouse model of type 2 diabetes mellitus at the multicellular level of
islets of Langerhans, as well as their effect on whole animal glucose
tolerance in both normal and insulin resistant mice.
References:
PODOBNIK, Boris, KOROŠAK, Dean, SKELIN, Maša, STOŽER, Andraž, DOLENŠEK,
Jurij, RUPNIK, Marjan, IVANOV, Plamen Ch., HOLME, P., JUSUP,
Marko. β-cells operate collectively to help maintain glucose
homeostasis. Biophysical journal, ISSN 1542-0086, 17 str. https://www.cell.com/biophysj/fulltext/S0006-3495(20)30308-8#%20,
doi: 10.1016/j.bpj.2020.04.005. [COBISS.SI-ID 512974648]
GRUBELNIK, Vladimir, MARKOVIČ, Rene, LIPOVŠEK DELAKORDA, Saška,
LEITINGER, Gerd, GOSAK, Marko, DOLENŠEK, Jurij, VALLADOLID-ACEBES, Ismael,
BERGGREN, Per-Olof, STOŽER, Andraž, PERC, Matjaž, MARHL, Marko. Modelling of
dysregulated glucagon secretion in type 2 diabetes by considering mitochondrial
alterations in pancreatic α-cells. Royal Society Open Science,
ISSN 2054-5703, 2020, vol. 7, iss. 1, str. 1-17, doi: 10.1098/rsos.191171.
[COBISS.SI-ID 25073672]
STOŽER, Andraž, MARKOVIČ, Rene, DOLENŠEK, Jurij, PERC, Matjaž, MARHL,
Marko, RUPNIK, Marjan, GOSAK, Marko. Heterogeneity and delayed activation as
hallmarks of self-organization and criticality in excitable tissue. Frontiers
in physiology, ISSN 1664-042X, 2019, vol. 10, str. 1-19, ilustr.,
doi: 10.3389/fphys.2019.00869. [COBISS.SI-ID 512903480]
STOŽER, Andraž, HOJS, Radovan, DOLENŠEK, Jurij. Beta cell functional
adaptation and dysfunction in insulin resistance and the role of chronic kidney
disease. Nephron journals, ISSN 2235-3186, 2019, vol. 143, no. 1,
str. 33-37, ilustr. https://www.karger.com/Article/FullText/495665,
doi: 10.1159/000495665.
[COBISS.SI-ID 512876344]
GÁL, Eleonóra, DOLENŠEK, Jurij, STOŽER, Andraž, POHOREC, Viljem, ÉBERT,
Attila, VENGLOVECZ, Viktória. A novel in situ approach to studying pancreatic
ducts in mice. Frontiers in physiology, ISSN 1664-042X, July 2019,
vol. 10, str. 1-9, ilustr. https://www.frontiersin.org/articles/10.3389/fphys.2019.00938/full,
doi: 10.3389/fphys.2019.00938. [COBISS.SI-ID 512907576]
DOLENŠEK, Jurij, SKELIN KLEMEN, Maša, GOSAK, Marko, KRIŽANČIĆ
BOMBEK, Lidija, POHOREC, Viljem, SLAK RUPNIK, Marjan, STOŽER,
Andraž. Glucose-dependent activation, activity, and deactivation of beta
cell networks in acute mouse pancreas tissue slices. BioRxiv. doi: https://doi.org/10.1101/2020.03.11.986893
Povzetek
V celicah beta glukoza stimulira izločanje inzulina preko znotrajceličnega
metabolizma, ki da ATP in zapre od ATP odvisne kalijeve kanale. To vodi v
depolarizacijo in odprtje od napetosti odvisnih kalcijevih kanalov in vdor
kalcijevih ionov v celico. Posledično povečanje znotrajcelične koncentracije
kalcijevih ionov deluje kot sekundarni sporočevalec in sprožitelj eksocitoze.
Terapevtsko pomembne sulfonilsečnine se neposredno vežejo na od ATP odvisne
kalijeve kanale, depolarizirajo celico in sprožijo izločanje inzulina na način,
ki je pretežno glukozno neodvisen. Po drugi strani pa inkretinski hormoni oz.
terapevtski agensi, ki posnemajo njihovo delovanje, vplivajo na celice beta
tako, da vežejo zunajcelične receptorje sklopljene z beljakovino G, ki
stimulirajo delovanje adenilil ciklaze in povečajo znotrajcelično koncentracijo
cAMP. Ta sekundarni sporočevalec vrši svoj vpliv preko dveh znotrajceličnih
poti, bodisi PKA bodisi Epac2A, in preko teh vpliva na različne korake v
sprožilni kaskadi, vendar, kot kaže, ni sposoben sprožiti eksocitoze v
odsotnosti od glukoze ali s sulfonilsečninami povzročenega začetnega
sprožilnega signal. V zadnjem času se pojavljajo dokazi, da sulfonilsečnine
neposredno vplivajo na aktivnost Epac2A in da so inkretini sposobni sprožiti
povečanje koncentracije kalcijevih ionov, kar kaže na številna križanja
signalnih poti, ki jih aktivirajo glukoza, sulfonilsečnine in inkretini. cAMP
ima morda poleg znotrajceličnega učinka na sklopitev med stimulusom in
sekrecijo vpliv tudi na širjenje depolarizacije in kalcijevih valov, ki so
sproženi z glukozo ali s sulfonilsečninami. Ta znotrajcelična funkcionalna
sklopitev normalno služi uskladitvi odzivnosti na glukozo celic beta na nivoju
vseh celic, ki so sklopljene v Langerhansovem otočku, prav tako pa je tudi
tarčno mesto diabetogenih učinkov v razvoju inzulinske rezistence in sladkorne
bolezni tipa 2. Kljub temu pa je slabo razumljen način vpliva cAMP na znotraj-
in medcelično prevajanje signalov ter njegova vloga v vzdrževanju glukozne
tolerance v normalnih pogojih in med razvojem sladkorne bolezni tipa 2. To pomanjkanje
razumevanja lahko vsaj delno razloži sedanje pomanjkanje dolgoročnega uspeha
terapevtskih učinkov sulfonilsečnin in sposobnosti razvrstitve bolnikov v
različne skupine zdravljenja glede na trajanje bolezni oz. znanje o specifičnih
poškodbah celic beta. Natančneje, obstaja praznina v našem znanju o različnih
vlogah PKA in Epac2A v zgoraj omenjenem procesu in boljšem razumevanju o tem,
kako lahko mehanizmi delovanja PKA in Epac2A vodijo v razvoj novejših
terapevtskih agensov. Z raziskovanjem sklopitve med stimulusom in sekrecijo, ki
jo povzročijo glukoza, sulfonilsečnine in inkretini od najbolj zgodnjih
(depolarizacija membrane) do najbolj poznih (eksocitoza) korakov, medcelične
sklopitve in glukozne tolerance na nivoju cele živali v kontrolni skupini miši
in miših z izbitim genom Epac2A, ki so hranjene bodisi s kontrolno dieto bodisi
z zahodno dieto, ki povzroči inzulinsko rezistenco, adaptacijo in odpoved celic
beta, želimo v okviru tega projekta doseči naslednje:
- Razjasniti
vlogo Epac2A in PKA v uravnavanju učinkov cAMP na različnih nivojih
sklopitve med stimulusom in sekrecijo.
- Razjasniti
vlogo Epac2A in PKA v uravnavanju učinkov cAMP na nivoju medcelične
funkcionalne sklopitve.
- Raziskati
vlogo Epac2A in PKA v uravnavanju učinkov ne samo glukoze, temveč tudi
različnih sulfonilsečnin, še posebej njihov vpliv na spremembe v
membranskem potencialu in kalcijevih oscilacijah, občutljivost
eksocitotskega aparata in funkcionalno medcelično sklopitev celic beta.
- Pripomoči
k mehanistični razlagi vloge Epac2A in PKA v adaptaciji in disfunkciji
celic beta tekom razvoja z zahodno hrano povzročene sladkorne bolezni tipa
2 v mišjih modelih na večceličnem nivoju Langerhansovih otočkov, kakor
tudi učinkov na glukozno toleranco celotne živali v normalnih in inzulinsko
rezistentnih miših.
Reference:
PODOBNIK, Boris, KOROŠAK, Dean, SKELIN, Maša, STOŽER, Andraž, DOLENŠEK,
Jurij, RUPNIK, Marjan, IVANOV, Plamen Ch., HOLME, P., JUSUP,
Marko. β-cells operate collectively to help maintain glucose
homeostasis. Biophysical journal, ISSN 1542-0086, 17 str. https://www.cell.com/biophysj/fulltext/S0006-3495(20)30308-8#%20,
doi: 10.1016/j.bpj.2020.04.005. [COBISS.SI-ID 512974648]
GRUBELNIK, Vladimir, MARKOVIČ, Rene, LIPOVŠEK DELAKORDA, Saška,
LEITINGER, Gerd, GOSAK, Marko, DOLENŠEK, Jurij, VALLADOLID-ACEBES, Ismael,
BERGGREN, Per-Olof, STOŽER, Andraž, PERC, Matjaž, MARHL, Marko. Modelling of
dysregulated glucagon secretion in type 2 diabetes by considering mitochondrial
alterations in pancreatic α-cells. Royal Society Open Science,
ISSN 2054-5703, 2020, vol. 7, iss. 1, str. 1-17, doi: 10.1098/rsos.191171.
[COBISS.SI-ID 25073672]
STOŽER, Andraž, MARKOVIČ, Rene, DOLENŠEK, Jurij, PERC, Matjaž, MARHL,
Marko, RUPNIK, Marjan, GOSAK, Marko. Heterogeneity and delayed activation as
hallmarks of self-organization and criticality in excitable tissue. Frontiers
in physiology, ISSN 1664-042X, 2019, vol. 10, str. 1-19, ilustr.,
doi: 10.3389/fphys.2019.00869. [COBISS.SI-ID 512903480]
STOŽER, Andraž, HOJS, Radovan, DOLENŠEK, Jurij. Beta cell functional
adaptation and dysfunction in insulin resistance and the role of chronic kidney
disease. Nephron journals, ISSN 2235-3186, 2019, vol. 143, no. 1,
str. 33-37, ilustr. https://www.karger.com/Article/FullText/495665,
doi: 10.1159/000495665.
[COBISS.SI-ID 512876344]
GÁL, Eleonóra, DOLENŠEK, Jurij, STOŽER, Andraž, POHOREC, Viljem, ÉBERT,
Attila, VENGLOVECZ, Viktória. A novel in situ approach to studying pancreatic
ducts in mice. Frontiers in physiology, ISSN 1664-042X, July 2019,
vol. 10, str. 1-9, ilustr. https://www.frontiersin.org/articles/10.3389/fphys.2019.00938/full,
doi: 10.3389/fphys.2019.00938. [COBISS.SI-ID 512907576]
DOLENŠEK, Jurij, SKELIN KLEMEN, Maša, GOSAK, Marko, KRIŽANČIĆ
BOMBEK, Lidija, POHOREC, Viljem, SLAK RUPNIK, Marjan, STOŽER,
Andraž. Glucose-dependent activation, activity, and deactivation of beta
cell networks in acute mouse pancreas tissue slices. BioRxiv. doi: https://doi.org/10.1101/2020.03.11.986893